
Deep Depth Completion of a Single RGB-D Image
(Supplementary Material)

Yinda Zhang
Princeton University

Thomas Funkhouser
Princeton University

This document contains further implementation details
and results of ablation studies, cross-dataset experiments,
and comparisons to other inpainting methods that would not
fit in the main paper.

1. Further Implementation Details

This section provides extra implementation details for
our methods. All data and code will be released upon the
acceptance to ensure reproducibility.

1.1. Mesh reconstruction and rendering

For every scene in the Matterport3D dataset, meshes
were reconstructed and rendered to provide “completed
depth images” using the following process. First, each
house was manually partitioned into regions roughly cor-
responding to rooms using an interactive floorplan draw-
ing interface. Second, a dense point cloud was extracted
containing RGB-D points (pixels) within each region, ex-
cluding pixels whose depth is beyond 4 meters from the
camera (to avoid noise in the reconstructed mesh). Third,
a mesh was reconstructed from the points of each region
using Screened Poisson Surface Reconstruction [7] with oc-
tree depth 11. The meshes for all regions were then merged
to form the final reconstructed mesh M for each scene.
“Completed depth images” were then created for each of
the original RGB-D camera views by rendering M from that
view using OpenGL and reading back the depth buffer.

Figure 1 shows images of a mesh produced with this pro-
cess. The top row shows exterior views covering the entire
house (vertex colors on the left, flat shading on the right).
The bottom row shows a close-up image of the mesh from
an interior view. Though the mesh is not perfect, it has
12.2M triangles reproducing most surface details. Please
note that the mesh is complete where holes typically occur
in RGB-D images (windows, shiny table tops, thin struc-
tures of chairs, glossy surfaces of cabinet, etc.). Please also
note the high level of detail for surfaces distant to the cam-
era (e.g., furniture in the next room visible through the door-
way).

Figure 1. Reconstructed mesh for one scene. The mesh used
to render completed depth images is shown from an outside view
(top) and inside view (bottom), rendered with vertex colors (left)
and flat shading (right).

1.2. Network architecture

All the networks used for this project are derived from
the surface normal estimation model proposed in Zhang
et.al [13] with the following modifications.

Input Depending on what is the input, the network takes
data with different channels at the first convolution layer.

• Color. The color is a 3-channel tensor with R,G,B for
each. The intensity values are normalized to [-0.5 0.5].
We use a bi-linear interpolation to resize color image
if necessary.

• Depth. The absolute values of depth in meter are used
as input. The pixels with no depth signal from sensor
are assigned a value of zero. To resolve the ambiguity
between “missing” and “0 meter”, a binary mask indi-
cating the pixels that have depth from sensor is added
as an additional channel as suggested in Zhang et.al
[12]. Overall, the depth input contains 2 channels (ab-
solute depth and binary valid mask) in total. To pre-
vent inaccurate smoothing, we use the nearest neigh-
bor search to resize depth image.

1



• Color+Depth. The input in this case is the concatena-
tion of the color and depth as introduced above. This
results in a 5-channel tensor as the input.

Output The network for absolute depth, surface normal,
and depth derivative outputs results with 1, 3, and 8 chan-
nels respectively. The occlusion boundary detection net-
work generates 3 channel outputs representing the proba-
bility of each pixel belonging to “no edge”, “depth crease”,
and “occlusion boundary”.

Loss Depth, surface normal, and derivative are predicted
as regression tasks. The SmoothL1 loss1 is used for train-
ing depth and derivative, and the cosine embedding loss2 is
used for training surface normal. The occlusion boundary
detection is formulated into a classification task, and cross
entropy loss3 is used. The last two batch normalization lay-
ers are removed because this results in better performance
in practice.

1.3. Training schema

The neural network training and testing are implemented
in Torch. For all the training tasks, RMSprop optimization
algorithm is used. The momentum is set to 0.9, and the
batch size is 1. The learning rate is set to 0.001 initially
and reduce to half every 100K iterations. All the models
converge within 300K iterations.

2. Further Experimental Results
This section provides extra experimental results, includ-

ing ablation studies, cross-dataset experiments, and com-
parisons to other depth completion methods.

2.1. Ablation Studies

Section 4.1 of the paper provides results of ablation stud-
ies aimed at investigating how different test inputs, training
data, loss functions, depth representations, and optimization
methods affect our depth prediction results. This section
provides further results of that type.

More qualitative results about surface normal estimation
model trained from different setting are shown in Figure
2. Comparatively, training the surface normal estimation
model with our setting (i.e. using only color image as input,
all available pixels with rendered depth as supervision, the
4-th column in the figure) achieves the best quality of pre-
diction, and hence benefits the global optimization for depth
completion.

1https://github.com/torch/nn/blob/master/doc/criterion.md#nn.Smoot-
hL1Criterion

2https://github.com/torch/nn/blob/master/doc/criterion.md#nn.Cosine-
EmbeddingCriterion

3https://github.com/torch/nn/blob/master/doc/criterion.md#nn.CrossE-
ntropyCriterion

Input Rep Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑
C D 0.408 0.500 6.49 12.80 30.01 54.44 72.88
C 1/D 0.412 0.492 6.86 12.88 28.99 54.51 73.13
D D 0.167 0.241 16.43 31.13 57.62 75.63 84.01
D 1/D 0.199 0.255 14.06 27.32 53.70 74.19 83.85

Ours 0.089 0.116 40.63 51.21 65.35 76.74 82.98

Table 1. Comparison of different depth representations. Pre-
dicting either depth (D) or disparity (1/D) provides worse results
than predicting surface normals and solving for depth (Ours) for
either color or depth inputs.

What kind of ground truth is better? This test studies
what normals should be used as supervision for the loss
when training the surface prediction network. We experi-
mented with normals computed from raw depth images and
with normals computed from the rendered mesh. The result
in the top two rows of Table 2 (Comparison:Target) shows
that the model trained on rendered depth performs better the
the one from raw depth. The improvement seems to come
partly from having training pixels for unobserved regions
and partly from more accurate depths (less noise).

What loss should be used to train the network? This
test studies which pixels should be included in the loss when
training the surface prediction network. We experimented
with using only the unobserved pixels, using only the ob-
served pixels, and both as supervision. The three mod-
els were trained separately in the training split of our new
dataset and then evaluated versus the rendered normals in
the test set. The quantitative results in the last three rows of
Table 2 (Comparison:Pixel) show that models trained with
supervision from both observed and unobserved pixels (bot-
tom row) works slightly better than the one trained with
only the observed pixels or only the unobserved pixels. This
shows that the unobserved pixels indeed provide additional
information.

What kind of depth representation is best? Several
depth representations were considered in the paper (nor-
mals, derivatives, depths, etc.). This section provides fur-
ther results regarding direct prediction of depth and dispar-
ity (i.e. one over depth) to augment/fix results in Table 2 of
the paper.

Actually, the top row of Table 2 of the paper (where the
Rep in column 2 is ‘D’) is mischaracterized as direct pre-
diction of depth from color – it is actually direct prediction
of complete depth from input depth. That was a mistake.
Sorry for the confusion. The correct result is in the top line
of Table 1 of this document (Input=C, Rep=D). The result
is quite similar and does not change any conclusions: pre-
dicting surface normals and then solving for depth is better
than predicting depth directly (Rel = 0.089 vs. 0.408).

We also consider prediction of disparity rather than
depth, as suggested in Chakrabarti et.al and other papers



Color Image Sensor Depth Using Render GT Using Raw GT Using Observed Using Unobserved Using Depth Using Color+DepthGround Truth

Figure 2. Comparison of normal estimation with different training settings. The 4-th column shows the output of the model trained
using only color as input and the rendered depth from all pixels as supervision, which is the setting we chose for our system. Comparatively,
it generates better surface normal than other alternative training settings.

Comparison Setting Depth Completion Surface Normal Estimation
Input Target Pixel Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252 ↑ 1.253 ↑ Mean↓ Median↓ 11.25↑ 22.5↑ 30↑

Target Color Raw Observed 0.094 0.123 39.84 50.40 64.68 76.38 82.80 32.87 18.70 34.2 55.7 64.3
Color Render Both 0.089 0.116 40.63 51.21 65.35 76.64 82.98 31.13 17.28 37.7 58.3 67.1

Pixel
Color Render Observed 0.091 0.121 40.31 50.88 64.92 76.50 82.91 32.16 18.44 34.7 56.4 65.5
Color Render Unobserved 0.090 0.119 40.71 51.22 65.21 76.59 83.04 31.52 17.70 35.4 57.7 66.6
Color Render Both 0.089 0.116 40.63 51.21 65.35 76.64 82.98 31.13 17.28 37.7 58.3 67.1

Table 2. Ablation studies. Evaluations of estimated surface normals and solved depths using different training inputs and losses.

[3]. We train models to estimate disparity directly from
color and raw depth respectively. The results can be seen
in Table 1. We find that estimating disparity results in per-
formance that is not better than estimating depth when given
either color or depth as input for our depth completion ap-
plication.

2.2. Cross-Dataset Experiments

This test investigates whether it is possible to train our
method on one dataset and use it effectively for another.

Matterport3D and ScanNet We first conduct experi-
ments between Matterport3D and ScanNet datasets. Both
have 3D surface reconstructions for large sets of environ-
ments (∼1000 rooms each) and thus provide suitable train-
ing data for training and test our method with rendered
meshes. We train a surface normal estimation model sep-
arately on each dataset, and then use it without fine tuning
to perform depth completion for the test set of the other. The

quantitative results are shown in Table 3. As expected, the
models work best on the test dataset matching the source
of the training data. Actually, the model trained from Mat-
terport3D has a better generalization capability compared
to the model trained from ScanNet, which is presumably
because the Matterport3D dataset has a more diverse range
of camera viewpoints. However, interestingly, both models
work still reasonably well when run on the other dataset,
even though they were not fine-tuned at all. We conjec-
ture this is because our surface normal prediction model is
trained only on color inputs, which are relatively similar
between the two datasets. Alternative methods using depth
as input would probably not generalize as well due to the
significant differences between the depth images of the two
datasets.

Intel RealSense Depth Sensor The depth map from In-
tel RealSense has better quality in short range but contains
more missing area compared to Structure Sensor [2] and



Train Test Rel RMSE 1.05 1.10 1.25 1.252 1.253

Matterport3D Matterport3D 0.089 0.116 40.63 51.21 65.35 76.74 82.98
ScanNet Matterport3D 0.098 0.128 37.96 49.79 64.01 76.04 82.64

Matterport3D Scannet 0.042 0.065 52.91 65.83 81.20 90.99 94.94
ScanNet ScanNet 0.041 0.064 53.33 66.02 81.14 90.92 94.92

Table 3. Cross-dataset performance. We trained surface normal estimation models on each dataset, Matterport3D and ScanNet, respec-
tively and test on both. Models work the best on the dataset where it is trained from. Model trained from Matterport3D shows better
generalization capability than the one from ScanNet.

Kinect [1]. The depth signal can be totally lost or extremely
sparse for distant area and surface with special materials,
e.g. shinny, dark. We train a surface normal estimation
model from ScanNet dataset [4] and directly evaluate on
the RGBD images captured by Intel RealSense from SUN-
RGBD dataset [11] without any finetuning. The results are
shown in Figure 3. From left to right, we show the input
color image, input depth image, completed depth image us-
ing our method, the point cloud visualization of the input
and completed depth map, and the surface normal converted
from the completed depth. As can be seen, the depth from
RealSense contains more missing area than Matterport3D
and ScanNet, yet our model still generates decent results.
This again shows that our method can effectively run on
RGBD images captured from various of depth sensors with
significantly different depth patterns.

2.3. Comparisons to Depth Inpainting Methods

Section 4.2 of the paper provides comparisons to alter-
native methods for depth inpainting. This section provides
further results of that type. In this additional study, we com-
pare with the following methods:

• DCT [6]: fill in missing values by solving the penal-
ized least squares of a linear system using discrete co-
sine transform using the code from Matlab Central 4.

• FCN [8]: train an FCN with symmetric shortcut con-
nection to take raw depth as input and generate com-
pleted depth as the output using the code from Zhang
et.al [13].

• CE [9]: train the context encoder of Pathak et.al to
inpaint depth images using the code from Github 5.

The results of DCT [6] are similar to other inpainting
comparisons provided in the paper. They mostly interpolate
holes. The results of FCN and CE show that methods de-
signed for inpainting color are not very effective at inpaint-
ing depth. As already described in the paper, methods that
learn depth from depth using an FCN can be lazy and only
learn to reproduce and interpolate provided depth. How-
ever, the problems are more subtle than that, as depth data

4https://www.mathworks.com/matlabcentral/fileexchange/27994-
inpaint-over-missing-data-in-1-d–2-d–3-d–nd-arrays

5https://github.com/pathak22/context-encoder

has many characteristics different from color. For starters,
the context encoder has a more shallow generator and lower
resolution than our network, and thus generates blurrier
depth images than ours. More significantly, the fact that
ground-truth depth data can have missing values compli-
cates the training of the discriminator network in the con-
text encoder (CE) – in a naive implementation, the gener-
ator would be trained to predict missing values in order to
fool the discriminator. We tried multiple approaches to cir-
cumvent this problem, including propagating gradients on
only unobserved pixels, filling a mean depth value in the
missing area. We find that none of them work as well as our
method.

More results of our method and comparison to other in-
painting methods can be found in Figure 5,6,7 in the end of
this paper. Each two rows shows an example, where the 2nd
row shows the completed depth of different methods, and
1st row shows their corresponding surface normal for pur-
pose of highlighting details and 3D geometry. For each ex-
ample, we show the input, ground truth, our result, followed
by the results of FCN [8], joint bilateral filter [10], discrete
cosine transform [6], optimization with only smoothness,
and PDE [5]. As can be seen, our method generates better
large scale planar geometry and sharper object boundary.

Method Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑
Garcia et.al [6] 0.115 0.144 36.78 47.13 61.48 74.89 81.67

FCN [13] 0.167 0.241 16.43 31.13 57.62 75.63 84.01
Ours 0.089 0.116 40.63 51.21 65.35 76.74 82.98

Table 4. Comparison to baseline inpainting methods. Our
method significantly outperforms baseline inpainting methods.

We also convert the completed depth maps into 3D point
clouds for visualization and comparison, which are shown
in Figure 4. The camera intrinsics provided in Matterport3D
dataset is used to project each pixel on the depth map into a
3D point, and the color intensity are copied from the color
image. Each row shows one example, with the color image
and point clouds converted from ground truth, input depth
(i.e. the raw depth from sensor that contains a lot of miss-
ing area), and results of our method, FCN [8], joint bilat-
eral filter [10], and smooth inpainting. Compared to other
methods, our method maintains better 3D geometry and less
bleeding on the boundary.



Color Image Input & Completed Depth Map Input & Completed Point Cloud Surface Normal

Figure 3. Our results on RealSense data. We run a model trained from ScanNet dataset and test on RGBD images captured by Intel
RealSense without finetune. From left to right, we show the input color image, input depth image, completed depth image using our
method, the point cloud visualization of the input and completed depth map, and the surface normal converted from the completed depth.
Our method generates good results for depth completion.



Color GT Ours FCN Bilateral SmoothInput

Figure 4. Point cloud visualization of our method and other comparisons. We convert the completed depth into point cloud. Our model
produces better 3D geometry with fewer bleeding issue at the boundary.



RGBD Input GT Ours FCN Bilateral DCT Smooth Spring

Figure 5. More results and comparison to inpainting methods. Each example is shown in two rows, where the second row shows the
input, ground truth, and completed depth, whereas the first row shows the surface normal of each corresponding depth map on the second
row to highlight details. Our method in general works better than other inpainting methods.



RGBD Input GT Ours FCN Bilateral DCT Smooth Spring

Figure 6. More results and comparison to inpainting methods. Each example is shown in two rows, where the second row shows the
input, ground truth, and completed depth, whereas the first row shows the surface normal of each corresponding depth map on the second
row to highlight details. Our method in general works better than other inpainting methods.



RGBD Input GT Ours FCN Bilateral DCT Smooth Spring

Figure 7. More results and comparison to inpainting methods. Each example is shown in two rows, where the second row shows the
input, ground truth, and completed depth, whereas the first row shows the surface normal of each corresponding depth map on the second
row to highlight details. Our method in general works better than other inpainting methods.



References
[1] Kinect for windows. https://developer.microsoft.com/en-

us/windows/kinect. 4
[2] Structure sensor. https://structure.io/. 3
[3] A. Chakrabarti, J. Shao, and G. Shakhnarovich. Depth from

a single image by harmonizing overcomplete local network
predictions. In Advances in Neural Information Processing
Systems, pages 2658–2666, 2016. 3

[4] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,
and M. Nießner. Scannet: Richly-annotated 3d reconstruc-
tions of indoor scenes. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017. 4

[5] J. D’Errico. Inpaint nans, 2017.
www.mathworks.com/matlabcentral/fileexchange/4551-
inpaint-nans. 4

[6] D. Garcia. Robust smoothing of gridded data in one and
higher dimensions with missing values. Computational
statistics & data analysis, 54(4):1167–1178, 2010. 4

[7] M. Kazhdan and H. Hoppe. Screened poisson surface recon-
struction. ACM Transactions on Graphics (TOG), 32(3):29,
2013. 1

[8] X. Mao, C. Shen, and Y.-B. Yang. Image restoration us-
ing very deep convolutional encoder-decoder networks with
symmetric skip connections. In Advances in Neural Infor-
mation Processing Systems, pages 2802–2810, 2016. 4

[9] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.
Efros. Context encoders: Feature learning by inpainting.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2536–2544, 2016. 4

[10] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. Com-
puter Vision–ECCV 2012, pages 746–760, 2012. 4

[11] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-
d scene understanding benchmark suite. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 567–576, 2015. 4

[12] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and
A. A. Efros. Real-time user-guided image colorization with
learned deep priors. ACM Transactions on Graphics (TOG),
9(4), 2017. 1

[13] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and
T. Funkhouser. Physically-based rendering for indoor scene
understanding using convolutional neural networks. Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 1, 4


